Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) → if(x, y, z)
if(x, y, if(x, y, z)) → if(x, y, z)
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) → if(x, y, z)
if(x, y, if(x, y, z)) → if(x, y, z)
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Precedence:
trivial
Status:
if3: [1,2,3]